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Abstract—Nowadays, artificial intelligence algorithms have a
major role in our lives. One of these areas are computer games.
Most of the games has AI-controlled components in order to
control the game behaviour. It is a must to keep these algorithms
up to date in order to provide the best experience for the users.

This paper will focus on the importance of artificial intelligence
algorithms in shooter games. The proposed system will consist of
two teams with the same number of agents. Each team will use
a different algorithm to control the agent behaviour which are
Finite State Machine (FSM) and Behaviour Tree (BT) algorithms.
FSM algorithm will contain the core mechanics of the game which
will be simplified to eliminating the enemy team. BT algorithm
on the other hand will evaluate the environmental factors and
make tactical decisions which is expected to increase the win
rate. Results will be used to determine the best fitting algorithm
for shooter games. Two main mechanisms will be included in
both algorithms which are movement decision system and enemy
targeting system.

To test the algorithms, a shooter game will be created with
Unity to gather the necessary data. The agents will be bound
with the same rules such as morale system and weapon accuracy
system. There will also be environmental factors such as covers
which reduce the probability of being hit. The game will be over
when a team has lost all of its agents. Algorithms will be tested
on different maps. Win rate, win time, survived agent count and
map design will be used to evaluate the results.

Index Terms—artificial intelligence, artificial intelligence in
games, behavior trees

I. INTRODUCTION

Artificial Intelligence (AI) has an important role in video
games. A solid AI algorithm is a must for video games to offer
a smooth user experience. Whether the game is a Massively
Multiplayer Online (MMO) game for PC or a simple hyper-
casual game for mobile devices, at some point an AI system
might be required. On the other hand, the complexity level
of the AI algorithm used may differ depending on the game
type. While simple games can be implemented with simple
AI algorithms, more advanced AI algorithms are required for
complex games. It is a must to choose the right AI algorithm
before implementing a game. Two of the most popular AI
algorithms for games are Finite State Machine (FSM) and
Behavior Tree (BT).

When programming the game AI, the right decision should
be made about the algorithm. Game platform, game type and
user profile should be considered. Without knowing the differ-
ences between algorithms, it is usually hard for a developer
to choose the right one. FSM algorithms are known for their
simplicity and ease of use whereas BT algorithms are known
for scalability and capability of more complex decisions. If
BT algorithm is chosen for a simple game, it may increase
the development time and complexity level unnecessarily.
Likewise, if FSM algorithm is chosen for a complex game,
it may result in an unrealistic behavior among agents and it
may reduce the scalability of the project. Purpose of this paper
is to mark the strong and weak sides of these algorithms and
to decide which fits best for shooter games.

Being two of the most popular algorithms in terms of
game AI, FSM and BT will be compared in a shooter game
environment. AI algorithms with FSM and BT will be used to
simulate agent behavior on a game world designed for shooter
games. Two teams will compete and results will be analyzed to
compare the effect of algorithms in terms of win rate, win time
and survived agent count. Each test will have different factors
that affect the gameplay such as map type, agent number, and
obstacles. The difference between algorithms may not be well
understood in a single map. So the tests will be executed on
different map types. Likewise, since the number of agents in
the teams might affect the performance of the algorithm, tests
will be executed with different agent numbers. Each map has
its own unique obstacles. Tests will be conducted on maps with
enabled obstacles and disabled obstacles in order to measure
the effects of obstacles on agent performance.

II. BACKGROUND

Digital games have become an important subject in daily
life. COVID19 pandemic has forced people to find new ways
to socialize and gaming is one of them. Both multiplayer and
single player games are a great way to entertain people. Almost
all types of games have a common subject when it comes to
entertainment which is AI. In video games, there is usually a
need for complex agent behaviors.



AI solutions used in video game industry differ from the
ones used in other industries. In other industries, traditional
techniques are usually implemented to solve problems by
optimizing the solutions without time and resource constraints.
In modern fast-paced computer games on the other hand,
Martin Estgren and Erik S. V. Jansson [1] states that ren-
dering of the graphics, physics calculations and AI updates
are needed to complete in less than 16ms to give a decent
experience to the users. It is also stated that clever techniques
have been implemented to meet these constraints and reduce
computational time.

This section will be focused on the use of existing AI
algorithms in all types of games. The main focus will be FSM
and BT algorithms since they are evaluated in this paper but
other algorithms will be briefly mentioned as well. Following
subsection will contain information about characters that are
controlled by AI. Rest of the subsections will discuss different
AI algorithms used in games.

A. Rule-Based Systems

Rule-based systems are considered to be the simplest ver-
sion of AI. Yoones A. Sekhavat [2] mentions that control over
the behavior is limited in these systems. A rule-based system
usually has a knowledge-base and a predetermined if-then
rules which are programmed to control an agent. Rules are
evaluated to check which conditions are met. A corresponding
action will be determined based on the conditions.

B. Finite State Machines

One of the most popular way of creating AI for an NPC
is Finite State Machines. Programming different states for
different behaviors simplifies the design process of behaviors.
Gonzalo Florez-Puga et al. [3] states in their paper that the
reason behind FSMs are still a common way of creating simple
intelligent agents is their simplicity, efficiency and expres-
sivity. A set of states exists in FSMs which are connected
by transitions. FSM can be represented as a directed graph
where each node represents a state. Only one state can be
active at a time. Main problem of the FSM is considered as
scalability in Y. A. Sekhavat’s work [1]. Modern games require
complex behaviors where a lot of conditions are checked at
the same time. Increasing number of states makes it almost
impossible to maintain a solid AI algorithm using FSMs.
Another downside of FSMs is the lack of reusability. Same
logic might be needed in a different context which requires
the logic to be reimplemented.

C. Hierarchical Finite State Machines

Hierarchical Finite State Machines (HFSM) can be con-
sidered as an evolution of FSMs. Gonzalo Florez-Puga et
al. [3] defines the purpose of HFSM as to group the states
which have common transitions. These states are called super
states. One of the most important features of Hierarchical State
Machines is hierarchical state nesting which is also known
as inheritance. Using inheritance while designing a system

Fig. 1. Example of FSM that controls an ant [4]

considerably decreases the development time since it allows
reusability of the classes and reduces redundancy. It also
increases maintainability since the implementation of parent
class may change which automatically affects the child classes.
However, the work of Rahul Dey and Dr. Chris Child [5]
reveals that high state count of HFSM requires a large number
of transitions which may lead to maintainability problems.

Fig. 2. Example of Hierarchical Finite State Machine [6]

D. Behavior Trees

Behavior Trees have become popular in the last decade in
terms of AI algorithms in games. Ryan Marcotte and Howard
J. Hamilton [7] states that Halo 2 (2004) was one of the first
games that used BT to control intelligent agents. BTs are still
widely used to implement AI algorithms in commercial games
such as Starcraft. Shakir Belle et al. [8] mentions in their work
that Unreal Engine which is a popular game engine comes with
built in BT algorithms ready to use for digital games. BTs
are usually used to control the decision making of non-player
characters (NPC) used in the games. They are also becoming
more popular in terms of an alternative for controlling robots
as it is stated in the work of Ryan Marcotte and Howard J.
Hamilton [7].



Y. A. Sekhavat [1] defines the BT as a directed tree which
includes a set of nodes and edges. The first node of a BT is
considered as the root node and does not have any parents.
Nodes that do not have children are the leaves of the tree.
BTs are associated with an AI agent in order to control each
agents’ AI logic. While executing, each component defined
in a BT of the agent is traversed and handled based on the
conditions. Rahul Dey and Dr. Chris Child [5] explains in their
work that a depth-first traversal is performed on each update
until a low level behavior is completed. Hence, behaviors are
placed from left to right with respect to their significance.
An important task should be placed at the most left part
whereas a less significant task can placed at the right. Ryan
Marcotte and Howard J. Hamilton [7] explains in their work
that each component is executed with a maximum amount of
processor time defined. Then, components return a status code
to their parents. Those status codes are SUCCESS, FAILURE
and RUNNING. There is also an ERROR status code but it
will be ignored since it is only used while debugging the
process. SUCCESS code is returned if the task associated with
the component is succesfully completed. FAILURE code is
returned if the task is completed without success. RUNNING
code is returned if the task is not completed and still requires
more steps to run. BTs consist of different nodes such as
Selector, Sequence, Inverter, Succeeder, Condition and Action
nodes.

• Selector: Selector node can be considered as if-else or
switch-case structures in programming. Child nodes of
the selector node are executed from left to right until
one of the conditions return RUNNING or SUCCESS.
Corresponding result is returned to the parent of the
selector node. If all child nodes return FAILURE, selector
also returns FAILURE.

• Sequence: Sequence node executes all of its children
with respect to their placement. If a node returns SUC-
CESS, the node to its right begins executing. If any
node returns FAILURE while executing, sequence stops
the execution and returns FAILURE to its parent. If all
children returns SUCCESS, sequence node also returns
SUCCESS.

• Inverter: Inverter executes the child node and returns the
inverted status to its parent. If child returns FAILURE,
inverter returns SUCCESS and vice versa.

• Succeeder: Succeeder waits until the child node has
finished running and returns SUCCESS regardless of the
result of the child.

• Failer: Failer starts the execution of its child node and
waits for its execution. When child node returns its value,
failer always returns FAILURE to its parent.

• Repeater: Repeater starts the execution of its child node.
It has an iteration variable. When child node finishes
its execution, repeater moves to the next iteration and
executes the child node again. When the iterations have
finished, repeater returns SUCCESS to its parent.

• Condition: Ryan Marcotte and Howard J. Hamilton [7]

states in their work that condition node evaluates a
Boolean question which means the answer can either be
true or false. Condition could be checking the distance
between a position, checking player health is above a
level or anything that could return a Boolean value. If
the Boolean value is true, SUCCESS is returned to the
parent node. FAILURE is returned otherwise. Condition
node cannot return RUNNING to the parent since it is
instant.

• Action: Action node can execute game code by calling
a method in an entity which is considered as an action.
This action could be anything such as moving the player
to a position, setting a variable, playing an animation or
shooting with a weapon. SUCCESS is returned to the
parent if the action is completed. FAILURE is returned
if the action is completed without success. If more time
is required for the action to be completed, RUNNING is
returned to the parent.

Fig. 3. Example of a behavior tree that includes selector, sequence, condition,
and action nodes [2]

The work of Martin Estgren and Erik S. V. Jansson [1]
states that action and condition nodes are considered as the leaf
nodes and are concrete. All other nodes are either composite
or decorator nodes which are abstract nodes. Hence, they need
to be a parent of a node in order to become concrete, such as
selector or inverter nodes.

E. Emotional Behavior Trees

Some BT algorithms may become easily predictable and
unadaptive. To solve this problem, Anja Johansson and
Pierangelo Dell’Acqua [9] proposes a new extension to the
BT which is called Emotional BT. This method allows the
algorithm to evaluate the emotions of the agent and take
actions accordingly. A new priority selector is added in the
work that is capable of dynamically evaluating priorities which
allows the evaluation of emotions. AI agents that are capable
of making decisions based on their emotions are a great way
to increase the realism of games.

F. Q-Learning Integrated Behavior Trees

Rahul Dey and Dr. Chris Child [5] proposes a new system
that integrates Q-Learning into Behavior Trees (QL-BT). This



way, Reinforcement Learning (RL) could be applied to BT.
The system takes a BT as input. By applying RL, a new BT
is generated that works more efficient. Results of the work
shows that the output tree of QL-BT performs at least on a
par with the original BT or outperforms it in all areas.

G. Supervised and Unsupervised Learning

The purpose of Supervised Learning (SL) is defined in the
work of Fernando Fradique Duarte et al. [10] as to learn a
predictive model and based on this model, make predictions
about the unseen data in the future. On the contrary, Unsuper-
vised Learning (UL) uses unlabeled data to extract relevant
information and make predictions about the future.

Fernando Fradique Duarte et al. [10] also states that game
AI domain has many applications related to SL and UL. One
of the most important example was the board game Othello
where the computer program defeated the world champion of
Othello.

H. Neural Networks and Deep Learning

Kun Shao et al. [11] states that the origin of deep learning
comes from the artificial neural networks. Purpose of deep
learning is to learn data representation. The inspiration for
deep learning comes from the theory of brain development.

Neural Networks (NN) and Deep Neural Networks (DNN)
have been used in the game AI domain in many applications
according to the work of Fernando Fradique Duarte et al.
[10] They state that in the domain of classical board games,
purpose of NNs were to lower the need of expert domain
knowledge. NNs were also used to automate the discovering
of good features and to improve the evaluation function used.

I. Reinforcement Learning

RL is considered as a subfield of Machine Learning (ML).
Fernando Fradique Duarte et al. [10] describes the concern of
RL with the design of agents which are capable of learning
with trial and error. Agents interact with their environment
in order to learn the desired actions. Unity recently provided
ML-Agents Toolkit which allows developers to use RL in their
games.

J. Evolutionary Algorithms

The work of Fernando Fradique Duarte et al. [10] describes
the Evolutionary Algorithms (EA) as a family of metaheuristic
optimization algorithms. It is stated that EAs are usually used
to solve complex problems.

In terms of video games, EAs are used in multiple applica-
tions. Fernando Fradique Duarte et al. [10] describes the use
cases as control, player characterization, procedural content
generation, customization of games and support for game
design.

III. METHODOLOGY

In video game industry, it is quite unclear for inexperienced
developers to choose the right AI algorithm for a game. There
are lots of AI algorithms on the table and each have unique
upsides and downsides. Since implementing and comparing all

of them is hardly possible, this research includes two of the
most used algorithms which are FSM and BT.

For comparing the algorithms, a real-time shooter game is
created with a game engine. The main mechanics of the game
are implemented so that each agent uses the same rules. This
allows agents to compete in a fair environment. FSM and BT
algorithms are implemented to the agents on different teams.
This way, quantitative data needed to compare the algorithms
could be collected. The main factor in this data is the winner
team. There are also factors such as map type, game time and
number of agents left alive in the winner team. By analyzing
the data, it should give an idea to determine which algorithm
is the best fit for a shooter game.

IV. EVALUATION

In this section, map types, test methods and test parameters
will be explained and test results will be analyzed.

A. Map Types

3 different map types are chosen for testing the AI algo-
rithms. These are small, medium and large maps.

Fig. 4. Small Map

Small map (Figure 4) consists of narrow areas and measures
the behavior of agents in close combat. Obstacles are an
important factor in terms of combat. Utilizing the environment
in combat is considered as an advantage to the AI algorithm.

Medium map (Figure 5) has more gaps between obstacles
compared to small map. Medium map allows agents to execute
flank attacks from sides or retreat to distant positions.

Large map (Figure 6) is the largest map in the game. It
takes some time for agents to find each other and engage in

Fig. 5. Medium Map Fig. 6. Large Map



this map. When combat begins at a position, all agents hear
the gun shots and move towards the conflict area. This map
is useful to test the reaction times of agents.

B. Test Parameters

Purpose of the test is to compare the performance of AI
algorithms in a shooter game. In order to maximize the differ-
ence of algorithms, 3 factors are chosen. These are map type,
number of agents and include obstacles. Map type is related
to the design of the environment that agents are competing.
Number of agents is the agent number in each team. Varying
number of agents in the scene has an effect on competition. It
is possible for some algorithms to give a better performance
when agent number is high whereas some algorithms might
perform worse if the environment is too crowded. Each map
has its own obstacles placed randomly around the map. Include
obstacles means whether these obstacles are enabled and might
block the vision of agents or disabled and agents have the
maximum line of sight if they are facing the right direction. A
unique combination of these 3 factors represents a test case.
Test parameters are the parameters that are watched during
a match. They are used to measure the difference between
algorithms. There are 3 parameters in the test which are win
rate, win time and agents survived. Win rate represents the win
rate of each algorithm. This is the most important parameter
that gives an idea about the algorithm performance. Win time
is the time passed until a team eliminates all agents of another
team. Besides winning the game, win time is also an important
factor in terms of understanding the algorithm behavior. Lastly,
agents survived means the number of agents that are alive
in the winning team. This parameter gives an idea about the
competition of teams. The more agents survive in the winner
team, the more successful that algorithm is.

C. Test Methods

To gather the test data, each match result is saved to a file.
Test cases are executed on all 3 maps. Iteration number is
chosen as 50 so that each test on a map is executed 50 times.
Agent number is chosen as 5 to 20 with an increment of 5.
With 3 test parameters, 4 different agent numbers and 3 maps,
a total of 24 tests are played. Since each test is executed 50
times, a total of 1200 matches are played which approximately
took 17 hours. Either BT or FSM algorithm might win the
game. There is also a third option which is tie. If teams cannot
eliminate each other in 5 minutes, the match results in a tie.
No tie is recorded in the tests.

D. Results

In this subsection, test results will be visualized in bar charts
and analyzed. Since test results occupy too much space, tests
are reduced from 24 to 18. Tests with 5,10 and 20 players
will be analyzed. Each chart represents a test parameter that
is watched. There are 3 charts that show Win Rate, Win Time
and Survived Agent Count. Map type, number of agents and
include obstacles parameters can be seen in Table I with
respect to the test number shown in the chart. In the test

results, BT algorithm dominates the FSM algorithm almost
in all cases. Only exception is Test 1 where FSM win rate is
greater by 2 points than BT win rate. Likewise, win time of
BT algorithm is lower than FSM algorithm in all cases except
Test 1.

Win times are usually close except the large map, where
the difference goes up to 20 seconds. This is expected since
travelling in the large map takes time. However, large win time
difference also implies that BT algorithm is more efficient in
terms of eliminating the enemy team whereas FSM algorithm
wastes more time in the process.

Survived agent count in the winner teams is usually close
with less than 1 point difference. Only exceptions are Test 12
and Test 18 where FSM agents survived considerably more
than BT agents. Common parameters of Test 12 and 18 are
agent number which is 20 and include obstacles which is
false. Win rate of FSM is lower than BT in these tests. We
can conclude from this result that despite the high win rate
of BT algorithm, FSM algorithm can still win games with
dominance.

When agent number is 20, it is seen from the tests that
win rate of BT is decreasing as the map gets bigger. When
obstacles are not included, this decrease is considerably large.
There is still a decrease when obstacles are included. This
result shows that BT algorithm performs better in small maps
compared to FSM algorithm. It is also seen that obstacles have
an effect on algorithm performance.

V. CONCLUSION

It is seen from the test results that BT algorithm dominates
the FSM algorithm in terms of win rate in almost all of the
cases. Only exception was Test 1 which was executed with
only 5 agents in both teams. However, the randomness factor
in the AI algorithms should be kept in mind since most of
the tests indicate that win rate of BT algorithm is much more
higher than FSM. By adding two simple tasks such as a more
effective enemy targeting and a flee action, BT algorithm wins
most of the games. Despite the high win rate of BT, agents
controlled by FSM algorithm could still beat BT agents with
a dominance. However, these cases were very rare. In terms
of realistic shooter games, BT algorithm seems a better fit for
AI agents rather than FSM.
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Fig. 7. Average win rate of BT (in blue) and FSM( in red) algorithms
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Fig. 8. Average win time of BT (in blue) and FSM (in red) algorithms
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Fig. 9. Average survived agent count of BT (in blue) and FSM (in red) algorithms



TABLE I
TEST CASES

Test Map # of Agents Include Obstacles
1 Small 5 TRUE
2 Small 5 FALSE
3 Small 10 TRUE
4 Small 10 FALSE
5 Small 20 TRUE
6 Small 20 FALSE
7 Medium 5 TRUE
8 Medium 5 FALSE
9 Medium 10 TRUE

10 Medium 10 FALSE
11 Medium 20 TRUE
12 Medium 20 FALSE
13 Large 5 TRUE
14 Large 5 FALSE
15 Large 10 TRUE
16 Large 10 FALSE
17 Large 20 TRUE
18 Large 20 FALSE


